

Republic of Yemen

University of Science & Technology-Yemen

Faculty of Computing and IT

Computer Sciences Department

Computer Networks Program

Migrating UST Network To

SDN and NFV

 Done by:

Alfudhail Hassan Alsharafi Ibraheem Abdullah Morghim

 Mohammed Abdulraqeb Asham

 Supervised by:

 Dr. Yasser Aldhamary

 This project has been built as a part of requirements for the award of Bachelor's degree of

Computer Sciences - Computer Networks Program for the year 2017/2018

II

Acknowledgement

First ,we would thank our God for his help and blessing during our work and lives . Also, We

would thank our parents for their help and encouragement . We would thank our supervisor Dr.

Yasser Aldamary and head our department Dr.Belal Alfuhaidi . Also we want to thank all

people who encouraged or helped us directly or undirectly during our work:

 - Dr.Ammar Alzahary

 - Dr.Waleed Shaher

 - Eng. Mohammed Alsultan

 - Eng.Ameen Alfaqeeh

 - Eng.Mohammed Alhakeem

 - Eng.Hassan Assaad

 - Eng.Mobarak Alamery

 - Eng.Mohammed Gayash

 - Eng. Majed Altwayti

 - Eng. Mohammed Aldafaee

III

Abstract

To enable programmability ,increase agility ,reduce hardware and reduce costs , SDN and NFV

are the most trend of networking world today . Migrating UST network to SDN and NFV and

integrate between them at the same network were the main aims of this project . A design is

proposed to implement migration to SDN and NFV for the UST network .We provided a

recommended plan for migration to SDN then we implemented it in a an emulator program ,

Then we integrated NFV with SDN in UST Network . We compare between both , the emulated

exiting the network and the emulated SDN network . Finally , we got that SDN is better in RTT

and Throughput . Also , SDN with NFV reduce cost .

IV

Table of Contents
Acknowledgement ... II

Abstract ... III

Chapter one Introduction .. 1

1.1 Introduction .. 2

1.2 Problem Statement .. 3

1.2.1 Venders dependence: .. 3

1.2.2 Network congealment: .. 3

1.2.3 Administration complexity: .. 3

1.2.4 Troubleshooting complexity: ... 3

1.3 Goals .. 3

1.4 Scope ... 4

1.4.1 Geographical Scope: ... 4

1.4.2 Functional scope: ... 4

1.5 Tools .. 4

1.6 Project Methodology .. 5

1.7 Project organization .. 6

1.8 Project Plan .. 6

Chapter two Literature Review ... 9

2.1 Introduction : .. 10

2.2 Definition of Term in Project : .. 10

2.3 Software-Defined Network (SDN) ... 11

2.3.1 Definition : ... 11

2.3.2 disadvantage for traditional networks: ... 11

2.4 Benefits of SDN : ... 12

2.5 SDN architecture: ... 13

2.6 NFV : .. 14

V

2.7 The southbound protocols : .. 14

2.7.1 OpFlex: ... 14

2.7.2 OpenFlow .. 15

2.7.3 The OpenFlow switch consists of three components [4]: .. 15

2.8 SDN controllers: ... 17

2.8.1 Definition : .. 17

2.8.2 Example : .. 17

2.8.3 Controller types : ... 17

2.9 Network Programming Languages.. 20

2.9.1 Networks Management .. 20

2.9.2 Flog : .. 21

2.9.3 Nettle : .. 23

2.9.4 FatTire : Fault Tolerating Regular Expressions.. 25

2.10 Emulators .. 26

2.11 Network Virtualization ... 27

2.11.1 Many different instantiations:- .. 27

2.11.2 Benefits of Network Virtualization :- ... 28

2.11.3 Three Examples of Virtual Networks ... 28

2.12 OpenStack ... 30

2.12.1 OpenStack Architecture .. 31

2.13 Integrate SDN with NFV .. 34

2.14 OpenFlow Manager (OFM) .. 34

2.15 Migration to SDN ... 35

2.16 Open Networking Foundation (ONF) .. 35

2.17 Migration Guidelines .. 35

2.18 Migration Requirements .. 36

2.19 SDN Devices .. 36

2.20 Migration Approaches .. 37

2.21 Network Types ... 39

VI

2.21 SDN Deployment Architecture ... 40

2.23 Traffic in SDN ... 40

2.24 Pre-migration Planning ... 40

2.25 Plan for Migration Recommended ... 41

2.25.1 Starting Network ... 41

2.25.2 B - Target Software-Defined Network ... 42

2.26 Previous projects: ... 43

2.26.1 Google Inter-Datacenter WAN Use Case ... 43

2.26.2 NTT Provider Edge Use Case: ... 43

2.26.3 Stanford Campus Network Use Case .. 44

Chapter Three Analysis .. 45

3.1 Introduction : .. 46

3.2 Requirements .. 46

3.2.1 Business Requirements .. 46

3.2.2 Physical Requirements : .. 47

3.3 UST Migration Plan: .. 50

3.3.1 Starting Network : .. 50

3.3.2 Target Software-Defined Network ... 53

3.4 Migration plan Comparison: .. 58

Chapter Four Design .. 60

4.1 Design .. 61

4.2 Costs of added Proposed objects : ... 62

Chapter five Implementation .. 63

5.1 SDN implementation : ... 64

5.1.1 Install and Configuring OpenDaylight controller : .. 64

5.1.2 Installing and Configuring Mininet : .. 65

5.1.3 Install and Configuring OpenFlowManager (OFM) .. 68

5.2 Implementation NFV: .. 70

5.3 SDN and NFV in UST Network .. 72

VII

5.4 Testing .. 76

5.5 Results .. 76

Chapter Six Conclusion & Future Work .. 79

6.1 Conclusion .. 80

6.2 Future Work : .. 81

References: .. 82

VIII

Figure : 1 time line Project Plan .. 8

Figure 2.1 : SDN architecture ... 13

Figure 2.2: OpenFlow switch ... 15

Figure 2.3: Nettle Layered architecture .. 23

Figure 2.4: The Mininet VM in a Nutshell ... 27

Figure 2.5: OpenStack Architecture ... 31

Figure 2.6: Primary OpenStack services .. 33

Figure 2.7: OpenFlow Manager (OFM) ... 34

Figure 2.4: Types of Diveces ... 36

Figure 3.1: UST Network .. 50

Figure 3.1: UST SDN Architecture .. 56

Figure 4: Design UST network with SDN and NFV .. 61

Figure 5.1: OpenDaylight GUI .. 65

Figure 5.2: Testing Mininet functionality. ... 66

Figure 5.3: Xming server to show the miniedit GUI .. 67

Figure 5.4: OpenFlowManager (OFM) .. 69

Figure 5.5: Open Virtual Mikrotik Router by Winbox .. 70

Figure 5.6: firewall in Virtual Mikrotik Router .. 71

Figure 5.6: UST Network on MiniEdit .. 72

Figure 5.8: UST Network in ODL .. 73

Figure 5.11: PING to DMZ servers ... 74

Figure 5.12: web server on DMZ servers ... 74

Figure 5.9: UST Network in OFM ... 75

Figure 5.10: Management UST Network by OFM .. 75

Figure 5.13: Throughput in SDN ... 76

Figure 5.14: Throughput in legacy topology .. 77

Figure 5.15: RTT in SDN ... 77

Figure 5.15: RTT in legacy Topology .. 78

 List of figure

file:///D:/1%20final%20project/1%20final%20project/Introduction-1.docx%23_Toc513635259
file:///D:/1%20final%20project/1%20final%20project/Introduction-1.docx%23_Toc513635260
file:///D:/1%20final%20project/1%20final%20project/Introduction-1.docx%23_Toc513635261
file:///D:/1%20final%20project/1%20final%20project/Introduction-1.docx%23_Toc513635262
file:///D:/1%20final%20project/1%20final%20project/Introduction-1.docx%23_Toc513635263
file:///D:/1%20final%20project/1%20final%20project/Introduction-1.docx%23_Toc513635264
file:///D:/1%20final%20project/1%20final%20project/Introduction-1.docx%23_Toc513635265
file:///D:/1%20final%20project/1%20final%20project/Introduction-1.docx%23_Toc513635266
file:///D:/1%20final%20project/1%20final%20project/Introduction-1.docx%23_Toc513635267
file:///D:/1%20final%20project/1%20final%20project/Introduction-1.docx%23_Toc513635268
file:///D:/1%20final%20project/1%20final%20project/Introduction-1.docx%23_Toc513635269
file:///D:/1%20final%20project/1%20final%20project/Introduction-1.docx%23_Toc513635270
file:///D:/1%20final%20project/1%20final%20project/Introduction-1.docx%23_Toc513635271
file:///D:/1%20final%20project/1%20final%20project/Introduction-1.docx%23_Toc513635272
file:///D:/1%20final%20project/1%20final%20project/Introduction-1.docx%23_Toc513635273
file:///D:/1%20final%20project/1%20final%20project/Introduction-1.docx%23_Toc513635274
file:///D:/1%20final%20project/1%20final%20project/Introduction-1.docx%23_Toc513635275
file:///D:/1%20final%20project/1%20final%20project/Introduction-1.docx%23_Toc513635276
file:///D:/1%20final%20project/1%20final%20project/Introduction-1.docx%23_Toc513635277
file:///D:/1%20final%20project/1%20final%20project/Introduction-1.docx%23_Toc513635278
file:///D:/1%20final%20project/1%20final%20project/Introduction-1.docx%23_Toc513635279
file:///D:/1%20final%20project/1%20final%20project/Introduction-1.docx%23_Toc513635280
file:///D:/1%20final%20project/1%20final%20project/Introduction-1.docx%23_Toc513635281
file:///D:/1%20final%20project/1%20final%20project/Introduction-1.docx%23_Toc513635282
file:///D:/1%20final%20project/1%20final%20project/Introduction-1.docx%23_Toc513635283
file:///D:/1%20final%20project/1%20final%20project/Introduction-1.docx%23_Toc513635284
file:///D:/1%20final%20project/1%20final%20project/Introduction-1.docx%23_Toc513635285
file:///D:/1%20final%20project/1%20final%20project/Introduction-1.docx%23_Toc513635286

1

Chapter one

Introduction

2

1.1 Introduction

 Generally, the beginning of enterprises and companies is limited , then they grow step by

step and day by day . This growth includes increasing of employees , offices, buildings,

branches and the network that connect all these objects . So, the network of enterprises and

companies grows dramatically , when they grow . Network scaling means that traffic of data

is increasing while the number of employees and services are added to the company , this

traffic is going to be huge more than the network can handle .Actually , this really well affect

the efficiency of the network and limit the bandwidth , so new network devices , new

network administrators and engineers must be brought to the company which means more

costs and very high complexity.

 In addition , Routing and switching functions are going to be complex , and more planning ,

management , services ,and protocols should be implemented. The type of service and protocol

well force to bay a network device with a specific version from a specific vender. So , network

companies well monopolize some services and compatibility between devices.

 To solve these complexities and more , very new technologies has come up to networks world.

Software Defined Network (SDN) and Network Function Virtualization (NFV) .

The main idea of SDN is to split the data plan from control plan , data plan well be located in a

switch hardware (openflow supported switch) , and control plan is located in a controller device

.[1] while NFV is to make network devices virtualized .

 The controller well control the switches by implementing scripts (instead of configrations)

programed by a network programmer (instead of network admin) . So , SDN well let the

network to be programmable and enabling to invent protocols and technologies instead of being

monopolized by venders. In this project , we are going to migrate the network of University of

Sciences and Technology (UST) to SDN and NFV network .

3

1.2 Problem Statement

 Nowadays , a lot of problems and difficulties face traditional networks . In our visit to the

data center (Network department.) of UST , we observed that some problems face this network

as any other traditional network. These problems include :

1.2.1 Venders dependence:

 Some services and protocols force to buy from a specific venders [2][3] .

1.2.2 Network congealment:

Services and protocols are embedded into network devices , so to use a service or a protocol that

network devices does not support , a new network device that support this service must be

bought[4].

1.2.3 Administration complexity:

 it is so hard to configure every single network device independently .

1.2.4 Troubleshooting complexity:

Digging where is the problem is also a real difficulty .

1.3 Goals

1 – Implementing migration to SDN and NFV

 2 - Understanding these very new technologies and sharpening our skills on them

 3 - Proving how network can be controlled and virtualized by SDN and NFV

 4 - Extract a general plan and steps to migrate any network to SDN

 5- Applying our experiences and skills (in networks and programing) that we have learned at

our studying years to use them in a new field

4

1.4 Scope

The geographical and functional scope are going to be defined as follows:

 1.4.1 Geographical Scope:

 The network of UST at the main branch

 1.4.2 Functional scope:

 1- Migrating the whole network of UST at main branch to SDN

 2- Migrating to NFV

 3 – Integrate SDN with NFV at the same topology

 4- Implement some scenarios that are required from the network

1.5 Tools

 1 – OpenDayLight (ODL) controller:

 Is the controller that well control the network.

 2 – Python 3.0

 To write programs and scripts that well control the network.

 3- Mininet:

 Emulation platform to emulate SDN inside.

 4- OpenStack

 To implement NFV.

 5 – MikroTik RouterOS

 To implement NFV.

5

 6-VMware

 To run virtual machines.

 7 – Ubunto Server (Linux)

 To run mininit and Vmware inside.

 8 – computers (Laptops)

1.6 Project Methodology

 To complete this project perfectly , we chose a set of steps as a project methodology :

1 – Learn SDN and NFV technologies and thier importance.

2 – Learn the tools used in this project including emulation and virtualization tools .

3 – collecting information about the project.

4 – Going to the data center of the UST network and meeting its engineers.

5 - Analysis the starting UST network.

6 – studying the need of SDN and NFV for UST network and analysis project

requirements .

7 - provide the supposed design for SDN and NFV network .

8 – implement the SDN and NFV

 9 - Test reachability on the new network.

9 – Test the networks compare performance between the old and new networks.

6

1.7 Project organization

 We are going to start with a general introduction and objectives of this project at chapter1 .

At chapter 2, the literature review and recommended guidelines for migration to SDN . At

chapter 3 and 4 , Analysis and design of both starting and target network. At 5 ,the

implementation of migration . At 6 , conclusion and Future work .

1.8 Project Plan

N0 Task Name Duration Start Finish Predecessors

1 SDN Migration 139 days 20/10/17 01/05/18

2 Conceptual and initialize project 31 days 20/10/17 30/11/17

3 Define the problem 1 day 20/10/17 20/10/17

4 identify project objectives 5 days 23/10/17 27/10/17 3

5 identify golas 3 days 30/10/17 01/11/17 4

6 Define Feasibility 1 day 02/11/17 02/11/17 5

7 Plan 20 days 06/11/17 30/11/17

8 identify project scop 10 days 06/11/17 17/11/17

9 identify Tools 5 days 25/11/17 30/11/17 8

10 literature review 30 days 05/12/17 15/01/18

11 Definite and study SDN

Technology

10 days 05/12/17 18/12/17

12 Definite and study Network

Virtualization

10 days 20/12/17 02/01/18

Table : 1 Project Plan

7

13 Definite and study Migration to

SDN

10 days 04/12/17 15/12/17

14 execute Project 76 days 10/01/18 25/04/18

15 Analysis 21 days 15/01/18 10/02/18 10

16 Feasibility study 2 days 15/01/18 16/01/18

17 Definition of methodology

analysis

3 days 17/01/18 19/01/18

18 Specification of requirements 3 days 22/01/18 24/01/18

16 Describe the current network of

UST

2 days 24/01/18 25/01/18

20 Learn simulation programs 4 days 26/01/18 31/01/18

21 Comparison between SDN

migration use cases

3 days 01/02/18 05/02/18

22 Determine the steps to migrate to

SDN

5 days 05/02/18 09/02/18

23 Design 10 days 15/02/18 28/02/18 15

24 Determine design programs 2 days 15/02/18 16/02/18

25 Design of the network diagram

of UST

3 days 16/02/18 20/02/18

26 Design of the network diagram

of UST of SDN technology

7 days 20/02/18 28/02/18

27 Implementation 14 days 04/03/18 21/03/18 23

28 Simulation of the current UST

network

6 days? 05/03/18 12/03/18

8

29 Simulation of the UST SDN

network

7 days 13/03/18 21/03/18 28

30 test 12 days 26/03/18 10/04/18 27

31 Determine the objectives of the

test

2 days 26/03/18 27/03/18

32 Determine the testing Approach 2 days 28/03/18 29/03/18

33 Determine the test programs 1 day 30/03/18 30/03/18

34 Test the current UST network 3 days 02/04/18 04/04/18

35 Test the UST SDN network 4 days 05/04/18 10/04/18

36 Conclusions and

Recommendations

2 days 13/04/18 16/04/18 30

37 Conclusions 1 day 13/04/18 13/04/18

38 Recommendations 1 day 16/04/18 16/04/18

39 Evaluate Project 6 days 20/04/18 27/04/18

Figure : 1 time line Project Plan

9

Chapter two

Literature Review

10

2.1 Introduction :

In this chapter we are going to offer a background about SDN and NFV and about concepts and

technologies that are related to SDN like languages , controllers and virtualization . we also

well define SDN migration and topics related to SDN migration . We are going to offer a

general plan that contains general steps to migrate any organization network to SDN . Finally ,

we well mention previous projects in SDN migration .

2.2 Definition of Term in Project :

Term Definition

SDN

Software-defined networking (SDN) refers to a new way of organization

computer network functionality

OpenFlow is a protocol for communication between Control layer and Infrastructure Layer

VXLAN
Virtual Extensible LAN base case is to connect two or more layer three network domains

and make them look like a common layer two domain

ACL Access list Routing Filter to make more role and block some output packets

QoS Quality of Serves make priority for packets

NFV
Network Function Virtualization is technique that uses a virtualization concept to
separate network functions from physical infrastructure

OpFlex OpFlex is created by Cisco and is a southbound protocol similar to OpenFlow

ACI Cisco Controller Platform

APIC Cisco Controller

IETF
Internet Engineering Task Force (IETF) develops and promotes voluntary Internet
standards, in particular the standards that comprise the Internet protocol suite (TCP/IP)

ONF
Open Networking Foundation (ONF) is a nonprofit trade organization, funded by
companies such as Deutsche Telekom, Facebook, Google, Microsoft

Flog Logic Programming for Software-Defined Networks

Nettle Taking the Sting Out of Programming Network Routers in SDN

FatTire Fault Tolerating Regular Expressions

FML Program language in Folg Programing

Frenetic Program language in Folg Programing

FRP language for expressing electrical circuits

VLAN Virtual Lan

Switchlets
Virtualization of the switch

VINI Virtual Network Infrastructure

Cabo Anther of Virtual Network

ATM Asynchronies Transfer Mode

API Application Programing Interface

NAS
Network-attached storage (NAS) is a file-level computer data storage server connected
to a computer network providing data access to a heterogeneous group of clients

SAN
storage area network (SAN) is a network which provides access to consolidated, block
level data storage

Table 2.1: Definition of Term in Project

https://en.wikipedia.org/wiki/Computer_data_storage
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Heterogeneous_computing
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Block_device
https://en.wikipedia.org/wiki/Block_device

11

2.3 Software-Defined Network (SDN)

A detailed description for the current UST network:

2.3.1 Definition :

 separation of control plane function from forwarding plane, it means that networks

managed and controlled by software application and SDN controller rather than traditional

networks management consoles and commands that requires a lot of administrative overhead

.[5],[9.].

2.3.2 disadvantage for traditional networks:

1- Complexity: Large number of network devices (like routers , switches, firewall, and

so on) and Many complex protocols that embedded on this device.[5],[6],[7],[8].

2- Inconsistent policies : like security and Quality of Serves (QoS) policies in

traditional network need to be manually configurated for hundreds or thousands

devices this makes policies change very complex because manual configurations are

prone to error that causes many hours of troubleshooting . [5],[6],[8].

3- Difficulty of scaling : with increasing applications and demand on network bandwidth

so networks growth needs to redesign the network to meet the requirements.

[5],[6],[8].

4- Vendor dependence: companies and enterprises seek to deploy new capabilities and

services in rapid response to changing business needs or user demands but their

ability to respond is hindered by vendors’ equipment product cycles which can range to

three years or more. [6],[8].

12

2.4 Benefits of SDN :

1- An integrated network (Centralized control of multi-vendor environments) : in

SDN we migrate to a centralized model, unlike traditional networks , where the SDN

controller becomes the single point of configuration of the network, it means SDN

controller software can control any OpenFlow-enabled network device from any

vendor.[1],[6].

2- Consistency : controller applies policies on group of applications and facilitates

policies changing , the framework offers a consistent and concise way to handle policy

changes. [5].

3- Scalable layer 2 across layer 3 : With SDN, we can create layer 2 networks across

multiple switches or layer 3 domains using Virtual Extensible LAN (VXLAN), The

VXLAN base case is to connect two or more layer three network domains and make them

look like a common layer two domain. This allows virtual machines on different

networks to communicate as if they were in the same layer 2 subnet.[1],[10].

4- Flexible application based network : in SDN everything is an application and all these

applications are running on SDN controller .[1].

5- Unified wired and wireless: some controllers support both wired and wireless

network.[1]

6- Extensible policy model : Because the policy model is open and can be extended to

other vendors and other device types .[5]

13

2.5 SDN architecture:

ONF organization defined SDN to three layers : [6]

1- Application Layer : this is the first layer that consists of services and applications that

are provided by the network for users like Routing Filter ACL and QoS this layer

connected to control layer by Representational state transfer (REST) APIs (northbound

interface).

2- Control layer : it Represents the central control point that gives instructions to

network devices by controller applications. There are many controllers we discuss them

later ,this layer connected to infrastructure layer by southbound protocols we are going

to explain it later.

3- Infrastructure Layer : consists of devices that forwarded and routing for data Whether

physically or virtual such as in Network Functions Virtualization(NFV).

Figure 2.1 : SDN architecture

14

2.6 NFV :

is technique that uses a virtualization concept to separate network functions from physical

infrastructure ,that means that to create virtual network functions like firewall ,switches ,routers

and load balancers using standard x86 servers . SDN is decoupling the control from the data

plane that means to technologies is dependent on the other.

 " The decoupling of network functions from the underlying hardware is closely related to

the decoupling of the control from the data plane advocated by SDN and therefore the

distinction of the two technologies can be a bit vague. It is important to understand that even

though closely related, SDN and NFV refer to different domains.

 NFV is complementary to SDN but does not depend on it and vice-versa. For instance,

the control functions of SDN could be implemented as virtual functions on the NFV

technology. On the other hand, an NFV orchestration system could control the forwarding

behavior of physical switches through SDN. However, neither technology is a requirement for

the operation of other, but both could benefit from the advantages each can offer." [7].

2.7 The southbound protocols :

 There are a number of protocols that are used by SDN controllers to provide programmatic

interface for how communication between Control layer and Infrastructure Layer like

OpenFlow and Cisco's OpFlex .[1],[2].

2.7.1 OpFlex:

OpFlex is created by Cisco and is a southbound protocol similar to OpenFlow. However, this

protocol is open source . Cisco has already submitted it to IETF. Cisco sets OpFlex in their

Nexus 9,000 switches as well as on their SDN controller platform (ACI) and controller

(APIC).[1].

15

2.7.2 OpenFlow

 Definition : is a protocol for communication between Control layer and Infrastructure

Layer . OpenFlow provides external program with access to forwarding plan of network . The

ONF manages the OpenFlow standards . OpenFlow allows network engineers to define how

traffic flow through network devices based on parameters such as usage patterns, applications,

and cloud resources,[1],[2],[4].

OpenFlow switch: is a physical device or virtual software in infrastructure layer that supports

OpenFlow protocol to forward packets in SDN environment. General, OpenFlow pushes policy

rules out from the controller to the switches.[1],[2],[4].

2.7.3 The OpenFlow switch consists of three components [4]:

1- Group table is responsible with flow tables for performing packet lookups and packet

forwarding.

2- Flow tables

3- OpenFlow channel is used for communication with controller founded in control layer

Figure 2.2: OpenFlow switch

16

Vendor Product

HP

1- HP 5920 & 5900 Switch Series.

2- HP 5130 EI Switch Series.

3- HP Switch 2920 series.

4- HP Switch 3500 series.

5- HP Switch 3800 series.

6- HP Switch 5400 series, v1 and v2 modules

7- HP Switch 5406R series.

8- HP Switch 5412A series.

9- HP Switch 8200 series, v1 and v2 modules

Juniper

Networks

1- MX Series

2- EX9200

3- QFX5100

4- EX4600

Alcatel-Lucent

1- OmniSwitch 10K.

2- OmniSwitch 9900.

3- OmniSwitch 6900

4- OmniSwitch 6860

5- OmniSwitch 6865

IBM IBM System Networking RackSwitch G8264

Brocade

Brocade VDX 2741, Brocade VDX 6740, Brocade VDX 6940 and

Brocade VDX 8770

Table 2.2: Some devices that support OpenFlow protocol

17

2.8 SDN controllers:

 2.8.1 Definition :

 is a control point program located in control layer that supports OpenFlow protocol or any

southbound protocols .It provides programmatic interface to switches (southbound interface)

and communicate with applications in application layer (Northbound interface) , the controller

is the network operating system.

2.8.2 Example :

 OpenFlow controller each time a decision must be made on the OpenFlow switches such

as when a new packet flow reaches an OpenFlow switch and its receive from network

applications additional policies and information for implement its on OpenFlow switches .

2.8.3 Controller types :

 There are a lot of controller and each of them consist of advantages and disadvantage We

will discuss some of them :

1- NOX and POX

NOX was first OpenFlow controller written in C++ and provides API for Python too, It

was developed to new NOX support only C++ its much faster and much cleaner

codebase , the NOX processing of OpenFlow messages incoming individually the NOX

simple to implement, but not efficient and robust and couldn't scale. Then it developed

to only python version of NOX which it called POX, POX is open source. [1],[2],[3].

2- Trema

Trema OpenFlow Controller is an extensible set of Ruby scripts and C. [2],[3]

18

3- Beacon :

Beacon is a fast, cross-platform, modular, Java-based controller that supports both event-

based and threaded operation but it was only supporting star topologies, which was one of

the limitations of this controller.[1],[3]

4- Floodlight

Floodlight is a Java-based OpenFlow controller, based on the Beacon implementation it

supports both physical and virtual OpenFlow switches ,

And it is open source and under Apache license the Floodlight a set of Java module

applications, which are loaded in the Floodlight properties file for example, learning

switch, hub, firewall, and static flow entry pusher . [1], [2],[3].

5- Application Policy Infrastructure Controller (APIC)

Its support OpFlex protocol that is southbound protocol between Cisco APIC controller

and Cisco Nexus switches.[1]

6- OpenDaylight (ODL)

OpenDaylight is a Linux Foundation Collaborative project it is Built on Java language

and support Multithreading and its support OpenFlow protocol and OpFlex protocol the

ODL is opensource The OpenDaylight Project is currently supported by 31 networking

industry companies. These supporters include Cisco, IBM, Juniper Microsoft, Redhat,

VMWare Ciena, Intel, Dell, HP, and many more. [1], [2],[3]

7- Ryu

Ryu is a component-based, open source ,integrates with OpenStack and supports

OpenFlow ,it is built on python language. [1], [3].

19

Controller Language PD OF MT TLS RA % Other Features

OpenDayLight Java/Python Y 1.3 Y Y Y 61% GUI

ONOS Java Y 1.3 Y _ _ 23%

Built for Service Providers. Also,

supports OVSDB, BGP, Netconf, TL1.

OPNFV Java/Python _ 1.3 Y Y Y 26%

Supports ODL, ONOS, or OpenContrail,

NV/SDN.

DIFANE C Y 1.0 Y _ _ _ Built on NOX

HyperFlow C++ Y 1.0 Y _ _ _ Built on NOX

NOX C++ N 1.0 N _ _ _ Deprecated

SNAC C++ N 1.0 N _ _ _ Built on NOX, GUI, closed source

POX Python N 1.0 N _ _ _ Development stagnated, GUI.

Pyretic Python N 1.0 N _ _ _ Built on POX. [Deprecated.]

Ryu Python N 1.5 N Y _ 15% Frequent switch certifications.

Ryuretic Python N 1.5 N Y _ _ Built on Ryu.

Beacon Java N 1.0 Y _ _ _ Limited to STAR topo, GUI.

Floodlight Java N 1.4 Y Y Y 11% Forked from Beacon, GUI.

Trema Ruby/C N 1.3 _ _ _ _

Kandoo Go Y 1.0 Y _ _ _

OpenContrail Java/Python Y _ Y Y Y 14%

Developed for OpenStack. Southbound

API: XMPP, BGP, and NETCONF.

OpenMUL C/Python Y 1.4 Y Y Y 8%

Supports NETCONF & OSVDB.

Created for stability and performance.

PD (Physically Distributed), MT (Multi-Threaded), TLS (Transport Layer Security) , RA (Rest API), OF

(OpenFlow Version),

% (Deployed Percentage [3])–Note some deployments may use more than one controller type.

Table 2.3: SDN Controller types

20

2.9 Network Programming Languages

 In this section we are going to discuss languages used in SDN:

• Flog : Logic Programming for Software-Defined Networks.

• Nettle : Taking the Sting Out of Programming Network Routers.

• FatTire : Fault Tolerating Regular Expressions.

2.9.1 Networks Management

2.9.1.1 In the past:

• Networks managed through a set of complex low-level, and heterogeneous interfaces

• Firewalls + network address translators + load balancers + routers + switches ==

Configured separately

• Thousands of lines low-level code in different domain-specific languages

• Complex routing mechanisms (error-prone tasks)

2.9.1.2 In Software Defined Networks

• Logically centralized Controller:

 – Managing distributed switches

 – General purpose machines

 – Working on routing decisions

 – Instruct the switches to install the necessary packet-forwarding rules.

21

2.9.2 Flog :

 SDN Logic Programming Language

• SDN packet-forwarding rule :

 ➔ Predicate + Action + Priority

• Example:

➔Predicate: match packets based on the IP header (MAC, IP, etc.)

➔ Action: Drop, forward or flood the packet to ports

➔ Priority: rules are executed according with priorities

Combines two programing languages:

 2.9.2.1 FML:

 • set of high-level built-in policy operators (SDN abstractions)

 • allow/deny certain flows

 • provide quality of service

 • Programing model Not flexible

 2.9.2.2 Frenetic:

 • declarative query language - SQL-like syntax

 • functional stream-processing language

 • language for describing packet forwarding

 • From FML:

 – Programming for controlling software-defined networks.

22

 • From Frenetic:

 Controller programs split into :

• Mechanism for querying network state

• Mechanism for processing data extracted from queries

• Component for generating packet-forwarding policies

(automatically push to the switches)

Event driven => execution of logic programs

1. Generates a packet-forwarding policy compiled and deployed on switches

2. Generates states : drive the logic program when the next network event is processed

Network Events:

• Switches online / offline

• Ports on switches active / inactive

• Statistics gathered by switches

• Packets arrive at the controller and require handling

23

2.9.3 Nettle :

 Taking the Sting Out of Programming Network Routers

• Do not configure network ; program it

• Networks of OpenFlow switches controlled using a high-level, declarative and expressive

language

• Based on the principles of functional reactive programming (FRP)

• Embedded in Haskell => general-purpose purely functional programming language.

• Domain Specific Language.

2.9.3.1 Layered architecture:

Figure 2.3: Nettle Layered architecture

24

2.9.3.1.1 Nettle/FRP :

as a language for expressing electrical circuits

• Focus on the stream of control messages among OpenFlow switches

• Nettle => powerful collection of

 – Signal functions

 – Event operators

2.9.3.1.2 OpenFlow switches :

 maintains flow table with flow entries:

❖ Match conditions IPs , header Fields

❖ Forword action to specific ports, flooding , dropping packets

❖ Statistics are updated

❖ Expirations settings expires a flow entry after prescribed time

2.9.3.1.3 Nettle Controller transforms:

stream of messages from switches

stream of commands for switches

25

2.9.4 FatTire : Fault Tolerating Regular Expressions

• Programs for fault tolerant Networks

• Based on regular expressions

• Main features:

➢ Expressive: easy to describe forwarding and fault tolerant policies

➢ Efficient: based on fast failover from OpenFlow

➢ Correct: reasoning about the behavior of the system during failure recovery

Central feature: Regular expressions for sets of legal paths through the network.

• FatTire programs are translated to OpenFlow switch configurations.

• Automatic response to link failures with no controller intervention.

Program

Language
Main Characteristic Advantages Disadvantages Implemnted in

Flog

- Network Event driven

- Focused on packets

 Flow

- Simple

- Combines

Frenetic and FML

Too simple and

limited to flow

control

C++,Python

FatTire

Targets fast failover

mechanisms provided

by OpenFlow standard

- High level

-Regular expression

powered

- Turns failover

scenarios easier to

understand

Only focused

over

solving link

failures

configuration

OCmal

Nettle

- allow fine-grained control

over switch behavior

- event-based

programming model

- Strong typed

- Extensible
 Haskell

Table 2.4: Network Programming Languages

26

2.10 Emulators

For Emulator network using SDN we brefere using Mininet Emulator.

Mininet is :

➢ a network emulator that runs in a Virtual Machine.

➢ A virtual network environment that can run on a single PC

➢ Runs real kernel, switch, and application code on a single machine

• Command-line, UI, Python interfaces.

➢ Many OpenFlow features are built-in

• Useful: developing, deploying , and sharing

Why Mininet ?

• Fast

• Possible to create custom topologies

• Can run real programs (anything that can run on Linux can run on a Mininet host)

•   Programmable OpenFlow switches

• Easy to use

•   Open source

Alternatives

➢   Real system: Pain to configure

➢   Networked VMs: Scalability

➢ Simulator: No path to hardware deployment

27

The Mininet VM in a Nutshell

2.11 Network Virtualization

 The meaning :-Representation of one or more logical network topologies on the same

infrastructure.

2.11.1 Many different instantiations:-

• Virtual Lan (VLAN)

• Various technologies and network testbeds

• Today: VMWare, Nicira, etc.

Figure 2.4: The Mininet VM in a Nutshell

28

2.11.2 Benefits of Network Virtualization :-

Sharing

➢ Multiple logical routers on a single platform

➢ Resource isolation in CPU , Memory , Bandwidth , Forwarding

Table.

 Customizability

➢ Customization routing and forwarding software.

➢ General-purpose CPUs for the control plan

➢ Network processors and FPGA for Data plan

 2.11.3 Three Examples of Virtual Networks

1- Tempest: Switchlets (1998)

➢ Separation of control framework from switches

➢ Virtualization of the switch

2- VINI: A Virtual Network Infrastructure (2006)

➢ Virtualization of the network infrastructure

 3- Cabo: Separates infrastructure, services (2007)

2.11.3.1 Tempest : swichlits:

➢ Multiple control architectures over ATM.

➢ Separation of switch.

➢ controller and fabric via open signaling .

➢ Partitioning of switch resources across controllers.

➢ Partitions port space, bandwidth, buffers.

➢ Different controllers control each switchlet..

29

2.11.3.2 VINI : virtual network infrastructure

➢ Enable deployment studies in real networks

➢ Share the nodes, links using virtualization

The first requirement of VINI is that it be a fixed infrastructure.

The reason is for control: experiments don’t want the network topology changing from under

them. The idea is that your experiment will provide layer 3 Building a VINI requires a big

investment, so it has to be shared. At the same time, we expect some VINI experiments to be

long-running. So there can be a red experiment deployed on VINI, and make experiment on the

same nodes. A VINI isolates experiments by giving each the illusion of dedicated hardware and

resources. And every experiments take its own topologies A VINI exposes network events and

can also inject them into an experiment.

Experiments can carry traffic for real end-users

Experiments can participate in Internet routing

➢ How does an experiment find out about external destinations?

 It should be able to integrate with the current Internet routing infrastructure, e.g., peer

with BGP routers.

Ultimately experiments should be able to advertise address blocks into the Internet,

become a virtual ISP.

2.11.3.2.1 VINI Status - Virtual Hosts

➢ VINI based on PlanetLab software

- Simultaneous experiments in separate VMs

- Each has “root” in its own VM, can customize

- Reserve CPU and bandwidth per experiment

30

2.11.3.2.2 VINI Status - Virtual Networks

➢ Configure a virtual topology for a slice

- Point-to-point virtual Ethernet links

- Slice controls routing table, virtual devices on the virtual hosts

Purpose: allow experimentation with routing software (e.g., XORP, Quagga) that already runs on

Linux.

2.11.3.2.3 VINI Trellis v0.1

➢ Virtual host

- Linux kernel IPv4 routing table

- Point-to-point virtual Ethernet

- Applications add/change routes

➢ Substrate

- Ethernet software bridge

- Traffic shaper

- Ethernet-over-GRE tunnels (to span multiple IP hops)

2.12 OpenStack

Definition : OpenStack is a group of open source cloud computing platforms . It began in

2010 as a joint project of Rackspace Hosting and of NASA . It provides an interface to manage

every aspect of virtual machines.

31

2.12.1 OpenStack Architecture

OpenStack architecture is described according to the services it provides

OPENSTACK generally consist of :

1- Compute services

2- Network services

3- Storage services

4- OpenStack controls

In each component, there are many services

Figure 2.5: OpenStack Architecture

32

OPENSTACK

SERVICE

OPENSTACK

PROJECT
DESCRIPTION

Compute

Nova

A compute service responsible for creating virtual machine

instances and managing their life cycle, as well as managing the

hypervisor of choice. The hypervisors are pluggable to Nova, while

the Nova API remains the same, regardless of the underlying

hypervisor.

Identity service

Keystone

Provides an authentication and authorization service for OpenStack

services. Provides a catalog of endpoints for all OpenStack

services. . Keystone is capable of integrating with third-party

directory services such as LDAP.

Networking

Neutron

Enables network connectivity as a service for other OpenStack

services, such as OpenStack Compute. Has a pluggable

architecture that supports many popular networking vendors and

technologies. Provides an API for users to define networks and

advanced services such as FWaaS

Block storage

Cinder

block storage service responsible for creating and managing

external storage, including block devices and NFS. It is capable of

connecting to vendor storage hardware through plug-ins. Cinder has

several generic plug-ins, which can connect to NFS and iSCSI, for

example. Vendors add value by creating dedicated plug-ins for their

storage devices.

Object

storage

Swift

Stores and retrieves arbitrary unstructured data objects via a

RESTful, HTTP based API. It is highly fault tolerant with its data

replication and scale-out architecture. Its implementation is not like

a file server with mountable directories.

Image service Glance

An image service responsible for managing images uploaded by

users. Glance is not a storage service, but it is responsible for

saving image attributes, making a virtual catalog of the images.

Dashboard Horizon

dashboard that creates a GUI for users to control the OpenStack

deployment. This is an extensible framework to which vendors can

add features. Horizon uses the same APIs exposed to users.

Orchestration Heat

orchestration service responsible for managing the life cycle of the

OpenStack infrastructure (such as servers, floating IP addresses,

volumes, security groups, and so on) and applications. Uses Heat

Orchestration Templates (HOT) to describe the infrastructure for an

Table 2.5: Primary OpenStack services

33

application and provides an API for Amazon's AWS template

format.

Telemetry ceilometer

The Telemetry service uses an agent-based architecture. Several

modules combine their responsibilities to collect, normalize, and

redirect data to be used for use cases such as metering, monitoring,

and alerting.

Figure 2.6: Primary OpenStack services

34

2.13 Integrate SDN with NFV

NFV and SDN are technologies capable of providing one network solution. SDN can provide

connectivity between Virtual Network Functions (VNFs) in a flexible and automated way,

whereas NFV can use SDN as part of a service function chain.

2.14 OpenFlow Manager (OFM)

OpenFlow Manager (OFM) is an application developed to run on top of ODL to visualize

OpenFlow (OF) topologies, program OF paths and gather OF stats. Software Defined

Networking (SDN) involves an application interacting with a network (composed of domain-

specific devices) for the purpose of simplifying operations or enabling a service. A controller is

positioned between the application and network and interacts with network elements (e.g.

switches) in the southbound direction using a variety of different protocols. In the northbound

direction it presents an abstraction of the network using in practice common REST APIs. The

controller vehicle for this application is ODL. The OpenFlow Manager (OFM) is an application

that leverages this innovation to manage OpenFlow network.

Figure 2.7: OpenFlow Manager (OFM)

35

2.15 Migration to SDN

 In this section we are going to cover SDN Migration. We are going to cover the concept of

migration briefly , a description about ONF , and methods and standards about migration to

SDN according to ONF .We also well mention previous projects and previous studies about

migration.

Migration:

In SDN, this term refers basically to the process of transporting a traditional network to SDN

network.

2.16 Open Networking Foundation (ONF)

ONF (as they introduce their selves) is a consortium that owns standardization of OpenFlow

and it is dedicated to the promotion and adoption of SDN through open standards development

2.17 Migration Guidelines

ONF recommends some guidelines and recommendations for migration:

1 - Network scenarios and use cases are to be identified , that well really simplify the migration .

2 - The target network and its core requirements must be fully identified.

3 - The objective is to simplify the network and reduce the cost of operation. A secondary goal is

to improve utilization.

4 – During migration steps , there are risks may effect the migration and the network its self. So ,

for each step must be a way for rollback

36

2.18 Migration Requirements

Here are some OpenFlow standard based objectives and high-level requirements that must be

met:

1 - The target network software must support programmability, through Application

Programming Interfaces (API) , so the controller should be able to control the devices through

APIs

2 - The target network must support software updates and rollback

3- The target network must support heterogeneity, so multiple devices from different vendors are

supported.

4- Starting network needs to be transformed into an intermediate state then the process can be

continued from a specific point safely .

2.19 SDN Devices

Devices in SDN can be classified to three classes:

1 – legacy Devices : traditional switches that does not support OpenFlow

2 – OpenFlow Devices: Switches with only OpenFlow forwarding plan

3- Hybrid Devices: Switches with both legacy control and data plan and OpenFlow capabilities

Figure 2.4: Types of Diveces

37

2.20 Migration Approaches

There are 2 main approaches that are used for migration listed as follows :

1 – Direct migration(GreenField):

In this approach , upgrading existing networking devices with OpenFlow Agents and

decommissioning the control machine in favor of OpenFlow controllers and configurators.

2 – Phased approach :

 OpenFlow devices are deployed in conjunction with exiting devices. Network operations are

maintained by both existing control machine and openflow controller and configurator. Once

finishing migration , control machine is decommissioned

Figure 2.5: GreenField Migration

38

 This approach can be classified to :

 A – Mixed deployment: new openflow devices are used with legacy devices

Figure 2.6: phased Migration

Figure 2.7: Mixed Deployment

39

 B – Hybrid deployment : legacy devices , openflow devices and hybrid devices are used

2.21 Network Types

Some types of network that must be considered for migration process:

1 – Campus Network :

 multiple buildings, each building have a wiring closet. The buildings are interconnected with a

central operations center. Components of the Campus network include a Campus wide backbone

with an egress point to WAN that associated to data center

 2 – Enterprise Network:

Composed of network resources (e.g NAS or SAN) used to interconnect subnetworks of

servers(virtual or physical)

Figure 2.8: Hybrid Deployment

40

3 – Multi -tenant:

Sharing physical resources using virtualization

3 – WAN/SP Networks:

Significance very big projects in using SDN for to manage interchange resources

2.21 SDN Deployment Architecture

 The deployment architecture depends on the network that will be migrated but typically it

consists of forwarding devices controlled by logically centralized controllers and physically ,the

controller can be centralized on servers or embedded with some or all openflow devices.

2.23 Traffic in SDN

 A very important note in SDN is to consider the traffic flows between the controllers and

agents, and to but in mind the cases that 100% of traffic deviated to controller and the cases that

require heavy traffic like VM migration.

2.24 Pre-migration Planning

During migration phases, the main goal is to save service continuity and to keep reachability . In

light of this goal , there are some practices offering best migration:

1 – Gap analysis: to ensure that there are alternatives to use in the case of meeting challenges

during migration

2 - Back-out Procedures: clear procedures that offering a way to back to the starting network if

something goes wrong during migration steps.

3 - Feature-Set analysis: defining what features are required and ensuring that openflow protocol

or switches meet these features.

41

2.25 Plan for Migration Recommended

ONF offers a document to use to simplify migration to SDN. This document may differ from

network to network as needed. Here we provide a quotation of ONF document.

2.25.1 Starting Network

Must be very understood and documented. The type of the network , hardware used in the

network , software , applications , monitoring tools , protocols , and buildings .

1- General Description :

 the purpose of the network and services delivered by the network.

2- Operational Mode:

 Description for network layers and protocols , which one well be included or excluded from

migration.

3- Deployed Equipment:.

a description of interfaces, traffic flows, etc in SDN equipment

4- Redundancy Model:

a specification of redundancy model functional requirements.

5- Management Tools:

A description of the management systems and tools that are used for monitoring and managing

the network.

6- Network Capacity

 Speeds, traffic , number of users and nodes .

7- Problems and Challenges

 Problems in starting network that motivate to migrate to SDN

42

8- Pre-Migration Assessment

To compare SDN network performance with the starting network

2.25.2 B - Target Software-Defined Network

 The motivation of SDN , Characteristics of target network and requirements of SDN

1- Objectives

Problem statement of issues that well be solved by SDN and how SDN will solve these issues

2- SDN Architecture

Detailed architecture of target network including determining the protocol that well be used in

SDN (e.g openflow) , devices used in target network , interfaces , and physical architecture that

offers locations of controller and devices and how they well be connected. Traffic flow also

should be mentioned here.

3- Migration Approach

Determining the migration approach with clear satisfying and the process of the approach

4- Dependencies Target

Defining what the solution depends on like controllers , network management tools and services

must be delivered

5- GAP Analysis

 What is missing to get the migration completed? Are existing tools sufficient, or is there a need

for new tool development? Where gaps exist, contingencies should be specified.

43

6- Migration Procedures

a step-by-step documentation for the migration . In other words the plan from starting network

through SDN network

7- Post-Migration Acceptance and service acceptance

Testing the success of migration to ensure that SDN support expected services.

8- Migration Timeline

time planning should be undertaken with possible rollbacks.

9- Skill Sets Requirements

Skills needed to finish migration like understanding of Vlans or expertizing a programing

language .

2.26 Previous projects:

2.26.1 Google Inter-Datacenter WAN Use Case

Google’s global user based services (Google Web Search, Google+, Gmail, YouTube, Google

Maps, etc.) require significant amount of data to be moved from one region to another, making

these applications and services very WAN-intensive. Google concluded that the delivery of such

services would not be scalable with the current technologies due to their non-linear complexity

in management and configuration. As a result, Google has decided to use SDN for managing

WAN as a fabric as opposed to a collection of boxes.

2.26.2 NTT Provider Edge Use Case:

This use case documents NTT’s migration of BGP to OpenFlow.In the traditional BGP

deployment models, the Provider Edge (PE) router maintains numerous BGP adjacencies as well

as large number of BGP routes/paths for multiple address families such as IPv4, IPv6, VPNv4

and VPNv6 etc. In addition, to meet customer service level agreements, the PE may be

44

configured with aggressive BGP session or Bidirectional Forwarding Detection (BFD) timers.

Handling BGP state machine, processing BGP updates as per configured policies and calculating

best paths for each address-family puts a heavy load on the router. Additionally, by definition,

service changes are quite frequent on the PEs to provision new customers or update customer

policies.

Because of the limited resources, including CPU and memory, as well as the proprietary nature

of the operating system (OS), service acceleration and innovation is dependent on vendor

implementation. BGP free edge defines a new paradigm of simplifying the eBGP routing

(control plane load) on the PE routers.

 In this deployment model, a PE router is converted into a forwarding/transport node to handle

data plane traffic whereas BGP control plane function is offloaded to a separate external entity.

The external control plane entity leverages OpenFlow/SDN to program the forwarding entries

for the data plane traffic on the PE router.

2.26.3 Stanford Campus Network Use Case

A part of the Stanford campus network was successfully migrated to support OpenFlow in 2010.

45

Chapter Three

Analysis

46

3.1 Introduction :

In this chapter , we are going to mention SDN and NFV requirements . We also well implement

the general SDN migration plan that we provided in UST migration . We are going to provide a

comparison between migration plans of UST network with other use cases .

3.2 Requirements

Requirements include business requirements and functional requirements:

3.2.1 Business Requirements

• Increase business agility

The flexibility of SDN makes it far easier and faster to roll out new innovative services,

such as real-time HD video conferencing and cloud applications, while still delivering a

consistently high quality end user experience

• Eliminate vendor lock-in

Open platforms are key in eliminating vendor lock-in and driving growth in SDN.

 According to Transparency Market Research the SDN market is set to surge to US$3.52

billion by 2018. The OpenDaylight platform, which is leading the transformation to open

SDN, now accounts for 95 percent of the entire SDN market. This enables enterprises to

use multivendor solutions to benefit healthy price competition and faster innovation.

• Reduce costs

SDN pools multiple compute, storage and processing functions onto low cost commodity

servers to reduce capital expenditure.

At the same time, NFV enables a lot of manual network configuration and management

tasks to be automated, reducing operating costs.

47

3.2.2 Physical Requirements :

The UST SDN Architecture needs to address the following requirements :

• Simplicity and Expressiveness

Generic semantic models that can represent multiple abstraction layers need to be

identified.

Such semantic models can include specific Information Models, but models that

encompass behavior, e.g. more general domain models, also need to be considered.

• Applicability

- Definition of Scope and Value Proposition

The SDN Architecture needs to ensure compatibility with existing network paradigms,

standards, and common practices. The various paradigms need to be able to coexist.

Abstractions and standard protocols need to be defined to allow for rapid adoption of SDN

solutions into existing operational environments motivated by the most business critical

usage scenarios.

- Network Types and Paradigms

The SDN Architecture needs to make provision for supporting all types of networks,

including wide-area transport networks, transport services, data center networks, intra-site

service chaining (including VNF chains) and residential IP services.

- Evolution over Time

The SDN Architecture should focus on fully supporting specific identified usage scenarios

instead of poorly supporting fractions of a larger set. Additional usage scenarios can be

supported at a later date.

48

• Interworking

Deployability of SDN is facilitated by remaining compatible with existing

technologies where possible.

• Scalability

- Scalability of the SDN Controller plane:

Although logically centralized, a single SDN Controller instance can be

implemented as a distributed system, spanning multiple physical platforms, in order

to improve scalability and availability.

- Scalability within a Network Element:

A Network Element may be implemented as a distributed system, potentially

spanning a heterogeneous set of processors ASICs, with internal load balancing ,

cascading

- Scalability specific to individual functions/capabilities:

Which functions are implemented in a fast vs. a slow path may differ for various

elements, and the supported capacities may differ, therefore standards need to make

provision for a wide range of capabilities/footprints and permit negotiation of feature

sets and associated parameters at initial configuration time or even at arbitrary times.

• Security

When security is discussed in the context of SDN, it can refer to the following

- The use of SDN to implement network security

- The security of SDN infrastructure and mechanisms itself

Security concerns pertaining to the SDN infrastructure itself (e.g. SDN Controller

plane traffic) can be grouped into the following categories:

❖ Authentication of communicating entities (e.g. SDN Controllers and Network

Elements).

49

❖ Access Control by enforcing configured policies that govern rights for each entity.

❖ Privacy by encrypting communication channels using protocols like (D)TLS/IPsec.

❖ Auditing by maintaining and permitting access to applicable records, for example

records that capture the identity of the initiator and/or the details of an operation.

❖ Denial of Service Mitigation by policing (metering).

• Resilience and Fault Tolerance

- Error Handling

The SDN Architecture needs to define in general terms how error conditions need to

be handled. Error conditions should be handled as gracefully as possible, with

erroneous inputs on any Interface.

- High Availability Support

The SDN Architecture needs to make provision for implementing highly available

networks.

This implies supporting redundancy of links and Network Elements (i.e. for the data

plane) and of SDN Controllers (i.e. for the SDN Controller plane).

• Management and Monitoring

 The SDN Architecture needs to take into account the management of the SDN system itself,

for example by considering arrangements for pairing Network Elements and SDN

Controllers as well as by making provision for performance monitoring of the SDN

Controller/Network Element interfaces.

50

3.3 UST Migration Plan:

In this section we are going to list the steps required to migrate UST network to SDN:

3.3.1 Starting Network :

A detailed description for the current UST network:

3.3.1.1 General Description :

UST consists of three Buildings :

1- Medical building.

2- Engineering building.

3- Administration seances building.

UST Network is designed based on Cisco Three-tier Hierarchical Network Model

1- Access layer :

 in each building there are several switches Which is called access switches ,

Figure 3.1: UST Network

51

 in each floor , there is one switch per Lab and one switch for staffs . these access

switches connect End Devices like labs’ Devices and staffs’ Devices , Printers and

Access points .

Access points are devices that connect wireless End Devices like cell phones and

Laptop to access switches , there are about six Access points in each floor.

2- Distributed layer :

 In each building there is one Distributed switche that connects access switches to the

core switch trough fiber optic and there are multiple VLANs (Virtual LAN) listed as

follows :

1- 1 VLAN dedicated to each floor of the building.

2- 1 VLAN dedicated to each access point.

3- 2 VLANs inside access point One for staffs and one for students

4- 1 VLAN dedicated for each Lab .

5- 1 VLAN for Management .

3- Core Layer

 In the main computer center there is device Which is called Core switch that connects

Distributed switches with each other, the Distributed switches are connected to Core

switch through two

cables :

1- 1G Fiber primary link.

2- 1G Fiber Backup link.

Core switch are connected to DMZ (Demilitarized Zone) Servers through UTM

(Unified Threat Management) Devices by 1000 UTP Link and DMZ , Core switch are

connected to ERP (Enterprise resource planning) Servers and Server Farm Segment

through UTM (Unified Threat Management) Devices by two Cables :

52

1- 10G Fiber primary link

2- 10G Fiber Backup link.

Internet Zone :

Internet Zone consists of load Balancer with ADSL Modems .

WAN segment :

Branches Routers are connected to the main Branch Router over MPLS -WAN

Technology .We well exclude this segment from migration ,because it needs SD-

WAN technology that is out of our scope.

3.3.1.2 Redundancy Model:

In UST Network there devices and cables Which acts as a backup or Redundant Which we

make clear through :

1- There are 1G Fiber Backup links from Distributed Switches to Core Switch

2- There is UTM Backup for Duplicate connection to DMZ and Internet Zone.

3- There is UTM Backup for Duplicate connection to ERP and Server Farm Segment .

4- There are 10G Fiber Backup links from Core Switch to UTM and from UTM to ERP

and Server Farm Segment Switches .

5- There is Switch Backup in Server Farm Segment.

3.3.1.3 Problems and Challenges

Problems and challenges that are facing UST network are listed in chapter one under problem

statement section.

53

3.3.2 Target Software-Defined Network

The target UST Network is to create a programmable network that the controller can control the

network through instructions go over openflow protocol

The target network well be three layers:

1- Data plane layer: by using new OpenFlow-enabled switches or adding OpenFlow support to

their existing switches. And all device like (Switches , Routers, Firewalls, LoadBalancers and

others …)

2- Controller platform : control all switches and decide how to forword packets between

openflow switches .it acts as the mind of the whole network

2 - Applications or Innovation: making the network programmable by building or using

APIs to serve a certain purpose .

3.3.2.1 Objectives

The aim of this project is to migrate UST network to SDN network for these reasons:

1 – To break venders monopoly and make the network work with multiple devices from different

vendors

2 – Make the network programmable

3 – To reduce administration complexity . So configure the whole network from the controller

4- To facilitate troubshooting process by making all network configuration in one device

5– To improve Network performance .

54

3.3.2.2 Migration Approach

We are going to use the phased approach to migrate UST network to SDN .We well use this

approach to make a way for rollback and to minimize the risks during migration. Stanford

project also used this approach.

 We well implement that at distributed layer by moving VLANs , servers and access switches

through the following phases:

1 – Add OpenFlow support on switch : by updating the firmware to support openflow

 2 - Verify OpenFlow support on switch : by connecting test hosts and test VLANs to the

switch and make them managed by the controller.

3- Migrate VLANs , servers and access switches to a new network , this is done by :

 1- creating a new subnet.

 2 – move servers and access switches to the new subnet.

 3 - Verify reachability within new subnet.

 4 - Enable OpenFlow for new subnet: this is done by configuring the controller . Then

verifying that the subnet with its servers and access switches are managed by the controller

55

3.3.2.3 SDN Architecture

We are going to reorganize the current UST network to be SDN and provide a supposed design

for the new network architecture . We are going to replace or update the switches to be

Openflow supported switches .The SDN architecture of the new network well consist of three

layers:

1 – Application layer : well include the applications and APIs that well set the instructions to

controller . It well also include programs that are innovated to serve network requirements

2 – Controller Platform : This layer well control the data plan layer according to the instructions

from the application layer . It well consists of a primary controller located on an Ubuntu server ,

and an other secondary controller located on an other server .

3 – Data plan layer : This layer well forward the data flow to paths which the controller tell

 We well explain the target UST SDN design in details in design chapter .

56

3.3.2.4 Dependencies Target

Here we are going to mention what controller and tools the target network depends on:

1 - The target network well be controlled by OpenDaylight controller .

2- The switches well be Openflow supported

3 - To test the network performance we are going to use some tools like WireShark

4 – For management , Solarwinds and OFM well be used

Figure 3.1: UST SDN Architecture

57

3.3.2.5 Migration Procedures

We are going to list the steps that are required to implement UST migration :

1- Install Java platform on an Ubuntu server

2 – Install ODL controller

3 – export java to ODL controller

3- Install features that provides topologies , APIs and openflow switches on ODL controller

4 – Install a GUI to ODL

5 – connecting switches to the controller as the topology provided in design chapter .

6 – configure the network from controller to be connecting correctly

7 – creating VLANs from the controller and adding hosts to their VLANs

8 – link Solarwinds the controller

9– Testing the network reachability

10 – Testing Network performance

These steps well be explained in details in implementation chapter later

3.3.2.6 Post-Migration Acceptance

After migrating the UST network , we are going to test the network under several cases for

ensuring that the network provides the expected services and performance . That well be done

implementation chapter later .

58

3.3.2.8 Skill Sets Requirements

 To implement UST migration to SDN , The team must have some essential skills in the

following fields :

1 – Linux Administration

1 – Python programing

2 – Routing and Switching

3 – Java programing

3.4 Migration plan Comparison:

Starting Network

Google Inter-

Datacenter

WAN

NTT Provider

Edge

Stanford

Campus

Network

UST

Migration

General Description

√ √ √ √

Operational Mode

√ √

Deployed Equipment:

√ √

Redundancy Model

√

√

Management Tools

√ √

Network Capacity

√ √

Problems and Challenges

√
 √

Pre-Migration Assessment

√

√

Table 3.1: Starting Network Migration plan Comparison

59

Target Software-Defined

Network

Google Inter-

Datacenter WAN

NTT Provider

Edge

Stanford Campus

Network
UST Migration

Objectives

√ √ √ √

Migration approach √ √ √ √

SDN Architecture

√ √ √ √

Dependencies Target

√ √ √ √

GAP Analysis

√ √ √

Migration Procedures

√ √ √

Post-Migration

Acceptance

√

√

√

√

Migration Timeline

√

Skill Sets Requirements

 √ √

Table 3.2: Target Software-Defined Network Migration plan

Comparison

60

Chapter Four

Design

61

4.1 Design

In this chapter we are going to make a design that suppose UST network after migration to

SDN Virtualization .

As we see in the figure above there are several changes that well be implemented in the existing

network to make the migration to SDN and Virtualization :

First : Upgrading all distributed and core switches to openflow-supported switches.

Second : Due to the importance and critical functions of core switch , we propose to add a

secondary openflow-supported core switch to support redundancy . The second core switch well

be chosen from any vender with consider of the abilities of hardware .

Figure 4: Design UST network with SDN and NFV

62

Third : We propose to add two power servers With Ubuntu server Linux (or any servers

distribution of Linux OSs) each one is redundant for the other, these servers have a hypervisor

(Vmware) to hold the controller(OpenDayLight) and the framework of virtualization

(OpenStack or MikroTik) . These servers well be located in SDN farm in the data center .

Fourth : Any Application or a network written program or script well be added on the ODL

controller .

Fifth: We propose to replace the UTM objects of the existing network with a virtualized one

located on the framework of virtualization (OpenStack or MikroTik) that’s installed on the

hypervisor (Vmware).

4.2 Costs of added Proposed objects :

 1 – One core Switches

 Cisco Catalyst switch = 4299$.

 2 – Two Power servers

 DELL , 128 GB RAM , 4 x Dell 146GB 10k 2.5" drives , US $4,487.6 * 2 = US $8975.2 .

3 – Vmware License =148.7 $

4 – Virtualized Firewall “free “

5 – MikroTik License = 50$

6 – OpenStack “free

7 – OpenDayLight “free “

8 – Ubuntu Server Linux “free “

9 – OpenflowManager application (OFM) “free “

63

Chapter five

Implementation

64

Implementation of migration to SDN and NFV :

In this chapter we are going to show the implementation of migration to SDN and NFV:

We make an emulation and virtualization for the SDN and NFV of UST topology

5.1 SDN implementation :

We used OpenDaylight for controller and mininet and mininedit for emulation infrastructure

for OpenFlow switches and we used OpenFlowManager (OFM) as application on

OpenDaylight controller to control the flow entry we’ll describe how install them

5.1.1 Install and Configuring OpenDaylight controller :

To install OpenDaylight controller we need to VMware program for install ubuntu linux on

virtual machine . after install ubuntu linux 14.4 on virtual machine We install OpenDaylight

Through these steps :

1. Download last version of OpenDaylight zip file from

https://www.opendaylight.org/downloads to directory that was created .

2. prerequisite: JVM 1.7+ (JAVA_HOME should be set to environment) .

3. Unzip the zip file and Navigate to the directory and run ./bin/karaf.

4. L2Switch Features Installation : karaf@root>feature:install odl-l2switch-switch-ui

5. Installing DLUX Features : It is responsible for the Graphical User Interface (GUI)

features in the OpenDaylight controller. It can be installed with the following commands:

Execute Next, install “feature:install odl-mdsal-apidocs”, Finally, execute

“feature:install odl-dlux-all” command.

6. install “feature:install odl-restconf” in the OpenDaylight Console to enable STP for

preventing loop

7. Navigate to http://controller-ip:8181 to open the web interface, then use the following

credentials to log in: User: admin ,Password: admin.

https://www.opendaylight.org/downloads

65

5.1.2 Installing and Configuring Mininet :

the Mininet is a network emulator. It can create a network of virtual switches, controllers,

servers, hosts, links and other network infrastructure devices to work with to install the Mininet ,

follow the following steps :

a. Clone the source code “git clone git://github.com/mininet/Mininet” to Mininet

machine.

b. In the “Mininet’ folder list available versions “git tag”.

c. Choose the version to be installed “git checkout –b [VERSION]”.

d. Once the code is fetched, install Mininet “Mininet/util/install.sh -a”.

The “-a” option will install everything included in the Mininet: dependencies to the

openvSwitch, OpenFlow wireshark, POX and other packages.

e. After the installation is completed, verify the basic functionality “sudo mn --test

pingall”. This command will test IP connectivity between the hosts in

the network created in Mininet. The result should be the same as shown in figure 5.2 .

Figure 5.1: OpenDaylight GUI

66

 After successful installation and testing, it is now possible to connect to the OpenDaylight

controller installed in the Installing and Configuring OpenDaylight section. The Mininet network

emulator includes MiniEdit, a simple GUI editor for Mininet. MiniEdit is an experimental tool

created to demonstrate how Mininet can be extended.

Figure 5.2: Testing Mininet functionality.

67

5.1.2.1 Start MiniEdit

To Start MiniEdit first Installing Xming serverWe used Xming server to show the miniedit GUI

in windows host

Then run MiniEdit script witch located in Mininet’s examples folder. To run MiniEdit, execute

the command:

$ sudo ~/mininet/examples/miniedit.py

as shown in figure 5.3.

Figure 5.3: Xming server to show the miniedit GUI

68

5.1.3 Install and Configuring OpenFlowManager (OFM)

To install OpenFlowManager (OFM) on OpenDaylight Through these steps :

1. OFM requires Python to work, so our Ubuntu master instance needs a package called

software-properties-common which includes Python libraries:

‘’apt-get install -y bash-completion software-properties-common python-software-

properties sudo curl ssh git”.

2. We're going to configure SSH so that only our authorized_keys will work for SSH and

while we're at it, we're going to enable root login:

“nano /etc/ssh/sshd_config ###(change PermitRootLogin to yes)” and restart the ssh

service so that they take effect: " service ssh start” and generating ssh keys : “ssh-

keygen -t rsa -P “ .

3. Install Java : First, add Oracle's PPA, then update your package repository.

“sudo add-apt-repository ppa:webupd8team/java sudo apt-get update”

Then Oracle JDK 8 “sudo apt-get install oracle-java8-installer” then Setting the

JAVA_HOME Environment Variable to determine the Java installation location

“nano ~/.bashrc export JAVA_HOME="/usr/lib/jvm/java-8-oracle" . ~/.bashrc” .

4. Install Node.js , Node.js is available from the NodeSource Debian and Ubuntu binary

distributions repository : “ curl -sL https://deb.nodesource.com/setup_4.x | sudo -E bash

-apt-get install nodejs”.

5. clone a repository openflowmanger from github “git clone

https://github.com/CiscoDevNet/OpenDaylight-Openflow-App.git”

6. sed -i 's/localhost/<server_ip>/g' ./OpenDaylight-Openflow-

App/ofm/src/common/config/env.module.js ### Use the IP we noted earlier, for

"server_ip"

7. npm install -g grunt-cli

https://github.com/CiscoDevNet/OpenDaylight-Openflow-App.git

69

8. add this feature on OpenDaylight “feature:install odl-restconf-all odl-openflowplugin-

all odl-l2switch-all odl-mdsal-all odl-yangtools-common”.

9. http://server ip :9000 to display OFM on browser .

Figure 5.4: OpenFlowManager (OFM)

70

5.2 Implementation NFV:

Due to high resources that OpenStack requires we used Virtual Mikrotik RouterOS to

achieve NFV and bind it to mininet . and we used Winbox , Winbox is a small utility that

allows administration of Mikrotik RouterOS using a fast and simple GUI

Figure 5.5: Open Virtual Mikrotik Router by Winbox

71

5.2.1 virtualized firewall on Virtual Mikrotik RouterOS

Figure 5.6: firewall in Virtual Mikrotik Router

72

5.3 SDN and NFV in UST Network

as we mentioned earlier we used mininet for emulation physical openflow switches and we use

OpenDaylight controller for control openflow switches . we used virtual mikrotik Router for

routing packet on different subnets and put some polices by virtualized Firewall and DNS that

are existing in MikroTik RouterOS and we use OFM application for manage flow entry ,We

will explain this in detail :

1- Building infrastructure network by MiniEdit

Figure 5.6: UST Network on MiniEdit

73

2- Bind the openflow switches to opendaylight controller as shown in figure 5.8

3- Bind virtual router to core openflow switch on mininet this was done through :

We add three custom specific virtual network interfaces by VMware application on

mininet and same thing on virtual Router and bind this interfaces from core Openflow

switches to virtual router interfaces like a physical connection .

Figure 5.8: UST Network in ODL

74

4- Policies that are implemented

1 – We have protected the servers farm from unauthorized access by making the DMZ servers

the only servers that receives quires from outside the network by DNS resolution :

2 – We have installed the web server only at the DMZ servers :

3 – The DMZ servers are the only that can access the server farm.

Figure 5.12: web server on DMZ servers

Figure 5.11: PING to DMZ servers

75

5- We used OFM to manage flows through the network

Figure 5.9: UST Network in OFM

Figure 5.10: Management UST Network by OFM

76

5.4 Testing

We generate a traffic from a host in one building to a DMZ server, the size of each packet was

64000 bit .The capturing time was 60 seconds , 30 second with traffic and the other 30 without

generated traffic . We compared both throughput and Round Trip Time (TTR) between the

SDN topology and the legacy topology .We used Wireshark tool for Testing .

5.5 Results

The previous figure shows that the Throughput in the SDN network

Figure 5.13: Throughput in SDN

77

The previous figure shows that the Throughput in the legacy network.

We can find that throughput in SDN network is quiet higher than throughput in legacy network

The previous figure shows that the RTT in the SDN network.

Figure 5.14: Throughput in legacy topology

Figure 5.15: RTT in SDN

78

The previous figure shows that the RTT in the legacy network.

We can find that RTT in SDN is clearly less than RTT in legacy network

Figure 5.15: RTT in legacy Topology

79

Chapter Six

Conclusion & Future Work

80

6.1 Conclusion

To enhance UST network by enabling programmability , increasing agility , reducing physical

network devices and reducing costs , we have migrated UST network to SDN and NFV in a

virtualized emulated network .

We have migrated UST network according to ONF steps , and we used mininet to emulate the

SDN network .

Then we have made some network devices virtualized (UTMs) to implement NFV . We have

done NFV using MikroTik Router OS that includes a lot of network devices .

Also, we have proposed a design that can implement NFV using OpenStack .

Due to high resources that OpenStack requires , we preferred to implement NFV using MikroTik

as a project .

We have proved that network can by programmable and controlled by an application by

installing an application (OFM) on the controller (ODL) and implementing some scenarios that

show that flows can be controlled by OFM application

Also , we have proved that network devices can be virtualized and implement the same functions

as physical devices . As we mentioned that We have done that by making the firewall virtualized

. We implemented some scenarios that show that the virtualized firewall can restrict and

forwards flows .

We have integrated NFV with SDN and we made the virtualized Firewall protects the network

that are controlled by the SDN controller (ODL)

We have implanted some real policies that are required and implemented by the existing network

in the new network , some of these polices are listed as follws :

1 – We have protected the servers farm from unauthorized access by making the DMZ servers

the only servers that receives quires from outside the network

81

2 – We have installed the web server only at the DMZ servers

3 – The DMZ servers only can access the server farm

6.2 Future Work :

 – LTE is one of the most important technologies that has come up to the world recently , We

recommend to make a study (or implementation) of SDN in LTE

 – Due to programmability of SDN , that will facilitate making the network smart .So the

network can predict risks , congestion ..etc and can solve the problems fast or before they happen

, that will reduce downtime and can utilize the network perfectly. So we recommend to make a

project in Artificial Intelligence in SDN

 – The development of network will not be dependent on new hardware products , but it will

depend on developing software so Software Engineering field will affect networks directly . We

recommend to make a study to provide standers or steps that organize and fit software

engineering with SDN

– Due to SDN network will be programmable and network requirements well be achieved by

applications , so we recommend to develop an application that performs some network tasks or

that adds some abilities to the network

– OpenStack is an advance framework of cloud and virtualization . and it supports a lot of

services of virtualization. We highly recommend to use it in virtualization

– SDN and NFV security is a big issue and a big argument , so we recommend to study SDN

and NFV security and implement it in a case study (e,g UST network)

– As it is known implementing a network in physical devices is somehow different from

implementing it in a emulation program . So , we recommend to take physical network devices

and upgrade them to support OpenFlow protocol then implement this project in a real world

environment .

82

References:

1- "Learning OpenDaylight The art of deploying successful networks " , Reza

Toghraee ,2017

2- " SDN: Software Defined Network", Thomas D. Nadeau ; Ken Gray , 2013

3- " Software Defined Networking with OpenFlow " , Siamak Azodolmolky ,2013

4- " Software Defined Network DESIGN AND DEPLOYMENT" , Patricia A.

Morreale ;James M. Anderson, 2015

5- "Software Defined NetworkingFor Dummies, Cisco Special Edition" , John Wiley

; Sons, Inc, 2015

6- "Software-Defined Networking :The New Norm for Networks", ONF White

Paper ,April 13, 2012

7- Software Defined Networking Concepts , Xenofon Foukas ;Mahesh K. Marina

;Kimon Kontovasilis.

8- Foundations of Modern Networking SDN, NFV, QoE, IoT, and Cloud , William

Stallings , 2016.

9- "SDN ببساطة ,المهندس /عادل الحميدي , الدكتور/ فؤاد بنعمران"

10- Virtual Extensible LAN (VXLAN) Overview , White Paper ,

https://www.arista.com/assets/data/pdf/Whitepapers/Arista_Networks_VXLAN_

White_Paper.pdf.

11- List of several SDN switches that support Group Table ALL feature by

Mohammad Noormohammadpour and Cauligi S. Raghavendra Ming Hsieh

Department of Electrical Engineering, University of Southern California.

https://www.arista.com/assets/data/pdf/Whitepapers/Arista_Networks_VXLAN_White_Paper.pdf
https://www.arista.com/assets/data/pdf/Whitepapers/Arista_Networks_VXLAN_White_Paper.pdf

83

12- Advancing Software-Defined Networks: A Survey JACOB H. COX, JR.,

JOAQUIN CHUNG, SEAN DONOVAN, JARED IVEY, RUSSELL J.CLARK

(Member, IEEE) GEORGE RILEY , AND HENRY L. OWEN, III (Senior

Member, IEEE).

13- .Naga Praveen Katta, Jennifer Rexford, and David Walker. Logic Programming

for Software-Defined Networks

14- Mark Reitblatt, Marco Canini, Arjun Guha, and Nate Foster.

15- Fattire: Declarative fault tolerance for software defined networks

16- Andreas Voellmy and Paul Hudak. Nettle: Taking the Sting Out of Programming

Network Routers.

17- "Building a Software-Defined Networking System with OpenDaylight

Controller",Maksim Sisov , 30 March 2016

18- "Software-Defined Networking :The New Norm for Networks", ONF White

Paper ,April 13, 2012

19- Foundations of Modern Networking SDN, NFV, QoE, IoT, and Cloud , William

Stallings , 2016

20- "Migration Use Cases and Methods" , Migration Working Group, Open

Networking Foundation,

84

 Appendix 1

Building UST network in mininet by Python

#!/usr/bin/python

from mininet.net import Mininet

from mininet.node import Controller, RemoteController, OVSController

from mininet.node import CPULimitedHost, Host, Node

from mininet.node import OVSKernelSwitch, UserSwitch

from mininet.node import IVSSwitch

from mininet.cli import CLI

from mininet.log import setLogLevel, info

from mininet.link import TCLink, Intf

from subprocess import call

def myNetwork():

 net = Mininet(topo=None,

 build=False,

 ipBase='10.0.0.0/8')

 info('*** Adding controller\n')

 c0=net.addController(name='c0',

 controller=RemoteController,

 ip='192.168.201.129',

 protocol='tcp',

 port=6633)

 info('*** Add switches\n')

 s4-Eng-sw1 = net.addSwitch('s4-Eng-sw1', cls=OVSKernelSwitch)

 s8-DC-sw1 = net.addSwitch('s8-DC-sw1', cls=OVSKernelSwitch)

 s3-Med-sw1 = net.addSwitch('s3-Med-sw1', cls=OVSKernelSwitch)

 s7-Dmz-sw2 = net.addSwitch('s7-Dmz-sw2', cls=OVSKernelSwitch)

 s2-Co-sw2 = net.addSwitch('s2-Co-sw2', cls=OVSKernelSwitch)

 Intf('eth2', node=s2-Co-sw2)

 s9-DC-sw2 = net.addSwitch('s9-DC-sw2', cls=OVSKernelSwitch)

 s1-Co-sw1 = net.addSwitch('s1-Co-sw1', cls=OVSKernelSwitch)

 Intf('eth1', node=s1-Co-sw1)

 Intf('eth3', node=s1-Co-sw1)

 s5-G-sw1 = net.addSwitch('s5-G-sw1', cls=OVSKernelSwitch)

 s6-Dmz-sw1 = net.addSwitch('s6-Dmz-sw1', cls=OVSKernelSwitch)

 info('*** Add hosts\n')
 h2-DM-s1 = net.addHost('h2-DM-s1', cls=Host, ip='8.8.8.11/24',

defaultRoute='via 8.8.8.1')
 h6-Emp-h1 = net.addHost('h6-Emp-h1', cls=Host, ip='7.7.7.12/24',

defaultRoute='via 7.7.7.1')
 h3-DC-ser1 = net.addHost('h3-DC-ser1', cls=Host, ip='5.5.5.11/24',

defaultRoute='via 5.5.5.1')
 h1-DM-s1 = net.addHost('h1-DM-s1', cls=Host, ip='8.8.8.12/24',

defaultRoute='via 8.8.8.1')
 h4-DC-ser2 = net.addHost('h4-DC-ser2', cls=Host, ip='5.5.5.12/24',

defaultRoute='via 5.5.5.1')
 h5-Lab-h1 = net.addHost('h5-Lab-h1', cls=Host, ip='7.7.7.11/24',

defaultRoute='via 7.7.7.1')

85

 h7-Lab-h2 = net.addHost('h7-Lab-h2', cls=Host, ip='7.7.7.13/24',

defaultRoute='via 7.7.7.1')

 info('*** Add links\n')

 net.addLink(s6-Dmz-sw1, s1-Co-sw1)

 net.addLink(s7-Dmz-sw2, s2-Co-sw2)

 net.addLink(s7-Dmz-sw2, s1-Co-sw1)

 net.addLink(s6-Dmz-sw1, s2-Co-sw2)

 net.addLink(s2-Co-sw2, s8-DC-sw1)

 net.addLink(s1-Co-sw1, s8-DC-sw1)

 net.addLink(s2-Co-sw2, s9-DC-sw2)

 net.addLink(s1-Co-sw1, s9-DC-sw2)

 net.addLink(s1-Co-sw1, s3-Med-sw1)

 net.addLink(s1-Co-sw1, s4-Eng-sw1)

 net.addLink(s1-Co-sw1, s5-G-sw1)

 net.addLink(s2-Co-sw2, s3-Med-sw1)

 net.addLink(s2-Co-sw2, s4-Eng-sw1)

 net.addLink(s2-Co-sw2, s5-G-sw1)

 net.addLink(h1-DM-s1, s6-Dmz-sw1)

 net.addLink(h2-DM-s1, s7-Dmz-sw2)

 net.addLink(s8-DC-sw1, h3-DC-ser1)

 net.addLink(s9-DC-sw2, h4-DC-ser2)

 net.addLink(s3-Med-sw1, h7-Lab-h2)

 net.addLink(s4-Eng-sw1, h6-Emp-h1)

 net.addLink(s5-G-sw1, h5-Lab-h1)

 net.addLink(s6-Dmz-sw1, s7-Dmz-sw2)

 net.addLink(s8-DC-sw1, s9-DC-sw2)

 info('*** Starting network\n')

 net.build()

 info('*** Starting controllers\n')

 for controller in net.controllers:

 controller.start()

 info('*** Starting switches\n')

 net.get('s4-Eng-sw1').start([c0])

 net.get('s8-DC-sw1').start([c0])

 net.get('s3-Med-sw1').start([c0])

 net.get('s7-Dmz-sw2').start([c0])

 net.get('s2-Co-sw2').start([c0])

 net.get('s9-DC-sw2').start([c0])

 net.get('s1-Co-sw1').start([c0])

 net.get('s5-G-sw1').start([c0])

 net.get('s6-Dmz-sw1').start([c0])

 info('*** Post configure switches and hosts\n')

 CLI(net)

 net.stop()

if __name__ == '__main__':

 setLogLevel('info')

 myNetwork()

86

Appendix 2

UST Network configuration in miniedit

{
 "application": {

 "dpctl": "",

 "ipBase": "10.0.0.0/8",

 "netflow": {

 "nflowAddId": "0",

 "nflowTarget": "",

 "nflowTimeout": "600"

 },

 "openFlowVersions": {

 "ovsOf10": "0",

 "ovsOf11": "0",

 "ovsOf12": "0",

 "ovsOf13": "1"

 },

 "sflow": {

 "sflowHeader": "128",

 "sflowPolling": "30",

 "sflowSampling": "400",

 "sflowTarget": ""

 },

 "startCLI": "1",
 "switchType": "ovs",

 "terminalType": "xterm"

 },

 "controllers": [

 {

 "opts": {

 "controllerProtocol": "tcp",

 "controllerType": "remote",

 "hostname": "c0",

 "remoteIP": "192.168.201.129",

 "remotePort": 6633

 },

 "x": "661.0",

 "y": "79.0"

 }

],

 "hosts": [

 {

 "number": "3",

 "opts": {

 "defaultRoute": "5.5.5.1",

 "hostname": "h3-DC-ser1",

 "ip": "5.5.5.11/24",

 "nodeNum": 3,

 "sched": "host"

 },

 "x": "515.0",

 "y": "614.0"

 },

 {

 "number": "5",

 "opts": {

87

 "defaultRoute": "7.7.7.1",

 "hostname": "h5-Lab-h1",

 "ip": "7.7.7.11/24",

 "nodeNum": 5,
 "sched": "host"

 },

 "x": "1156.0",

 "y": "435.0"

 },

 {

 "number": "6",

 "opts": {

 "defaultRoute": "7.7.7.1",

 "hostname": "h6-Emp-h1",

 "ip": "7.7.7.12/24",

 "nodeNum": 6,

 "sched": "host"

 },

 "x": "1151.0",

 "y": "311.0"

 },

 {

 "number": "4",

 "opts": {

 "defaultRoute": "5.5.5.1",

 "hostname": "h4-DC-ser2",

 "ip": "5.5.5.12/24",

 "nodeNum": 4,

 "sched": "host"

 },

 "x": "692.0",

 "y": "612.0"

 },

 {

 "number": "2",

 "opts": {

 "defaultRoute": "8.8.8.1",

 "hostname": "h2-DM-s1",

 "ip": "8.8.8.11/24",

 "nodeNum": 2,

 "sched": "host"

 },

 "x": "201.0",

 "y": "241.0"

 },

 {

 "number": "1",

 "opts": {

 "defaultRoute": "8.8.8.1",

 "hostname": "h1-DM-s1",

 "ip": "8.8.8.12/24",

 "nodeNum": 1,

 "sched": "cfs"

 },

 "x": "207.0",

 "y": "123.0"

 },

 {

 "number": "7",

 "opts": {

 "defaultRoute": "7.7.7.1",

88

 "hostname": "h7-Lab-h2",

 "ip": "7.7.7.13/24",

 "nodeNum": 7,

 "sched": "host"

 },

 "x": "1152.0",

 "y": "195.0"

 }

],

 "links": [

 {

 "dest": "s1-Co-sw1",

 "opts": {},

 "src": "s6-Dmz-sw1"

 },

 {

 "dest": "s2-Co-sw2",

 "opts": {},

 "src": "s7-Dmz-sw2"

 },

 {

 "dest": "s1-Co-sw1",

 "opts": {},

 "src": "s7-Dmz-sw2"

 },

 {

 "dest": "s2-Co-sw2",

 "opts": {},

 "src": "s6-Dmz-sw1"

 },

 {

 "dest": "s8-DC-sw1",

 "opts": {},

 "src": "s2-Co-sw2"

 },

 {

 "dest": "s8-DC-sw1",

 "opts": {},

 "src": "s1-Co-sw1"

 },

 {

 "dest": "s9-DC-sw2",

 "opts": {},

 "src": "s2-Co-sw2"

 },

 {

 "dest": "s9-DC-sw2",

 "opts": {},

 "src": "s1-Co-sw1"

 },

 {

 "dest": "s3-Med-sw1",

 "opts": {},

 "src": "s1-Co-sw1"

 },

 {

 "dest": "s4-Eng-sw1",

 "opts": {},

 "src": "s1-Co-sw1"

 },

 {

89

 "dest": "s5-G-sw1",

 "opts": {},

 "src": "s1-Co-sw1"

 },

 {

 "dest": "s3-Med-sw1",

 "opts": {},

 "src": "s2-Co-sw2"

 },

 {

 "dest": "s4-Eng-sw1",

 "opts": {},

 "src": "s2-Co-sw2"

 },

 {

 "dest": "s5-G-sw1",

 "opts": {},

 "src": "s2-Co-sw2"

 },

 {

 "dest": "s6-Dmz-sw1",

 "opts": {},

 "src": "h1-DM-s1"

 },

 {

 "dest": "s7-Dmz-sw2",

 "opts": {},

 "src": "h2-DM-s1"

 },

 {

 "dest": "h3-DC-ser1",

 "opts": {},

 "src": "s8-DC-sw1"
 },

 {

 "dest": "h4-DC-ser2",

 "opts": {},

 "src": "s9-DC-sw2"

 },

 {

 "dest": "h7-Lab-h2",

 "opts": {},

 "src": "s3-Med-sw1"

 },

 {

 "dest": "h6-Emp-h1",

 "opts": {},

 "src": "s4-Eng-sw1"

 },

 {

 "dest": "h5-Lab-h1",

 "opts": {},

 "src": "s5-G-sw1"

 },

 {

 "dest": "s7-Dmz-sw2",

 "opts": {},

 "src": "s6-Dmz-sw1"

 },

 {

 "dest": "s9-DC-sw2",

90

 "opts": {},

 "src": "s8-DC-sw1"

 }

],

 "switches": [

 {

 "number": "7",

 "opts": {

 "controllers": [

 "c0"

],

 "hostname": "s7-Dmz-sw2",

 "netflow": "0",

 "nodeNum": 7,

 "sflow": "0",

 "switchIP": "",

 "switchType": "default"

 },

 "x": "359.0",

 "y": "240.0"

 },

 {

 "number": "3",

 "opts": {

 "controllers": [

 "c0"

],

 "hostname": "s3-Med-sw1",

 "netflow": "0",

 "nodeNum": 3,

 "sflow": "0",

 "switchIP": "",

 "switchType": "default"

 },

 "x": "976.0",

 "y": "194.0"

 },

 {

 "number": "8",

 "opts": {

 "controllers": [

 "c0"

],

 "hostname": "s8-DC-sw1",

 "netflow": "0",

 "nodeNum": 8,

 "sflow": "0",

 "switchIP": "",

 "switchType": "default"

 },

 "x": "515.0",

 "y": "527.0"

 },

 {

 "number": "6",

 "opts": {

 "controllers": [

 "c0"

],

 "hostname": "s6-Dmz-sw1",

 "netflow": "0",

91

 "nodeNum": 6,

 "sflow": "0",

 "switchIP": "",

 "switchType": "default"

 },

 "x": "358.0",

 "y": "121.0"

 },

 {

 "number": "4",

 "opts": {

 "controllers": [

 "c0"

],

 "hostname": "s4-Eng-sw1",

 "netflow": "0",

 "nodeNum": 4,

 "sflow": "0",

 "switchIP": "",

 "switchType": "default"

 },

 "x": "980.0",

 "y": "310.0"

 },

 {

 "number": "1",

 "opts": {

 "controllers": [

 "c0"

],

 "externalInterfaces": [

 "eth1",

 "eth3"

],

 "hostname": "s1-Co-sw1",

 "netflow": "0",

 "nodeNum": 1,

 "sflow": "0",

 "switchIP": "",

 "switchType": "default"

 },

 "x": "657.0",

 "y": "241.0"

 },

 {

 "number": "5",

 "opts": {

 "controllers": [

 "c0"

],

 "hostname": "s5-G-sw1",

 "netflow": "0",

 "nodeNum": 5,

 "sflow": "0",

 "switchIP": "",

 "switchType": "default"

 },

 "x": "983.0",

 "y": "435.0"

 },

 {

92

 "number": "9",

 "opts": {

 "controllers": [

 "c0"

],

 "hostname": "s9-DC-sw2",

 "netflow": "0",

 "nodeNum": 9,

 "sflow": "0",

 "switchIP": "",

 "switchType": "default"

 },

 "x": "691.0",

 "y": "526.0"

 },

 {

 "number": "2",

 "opts": {

 "controllers": [

 "c0"

],

 "externalInterfaces": [

 "eth2"
],

 "hostname": "s2-Co-sw2",

 "netflow": "0",

 "nodeNum": 2,

 "sflow": "0",

 "switchIP": "",

 "switchType": "default"

 },

 "x": "658.0",

 "y": "346.0"

 }

],

 "version": "2"

}

